Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.344
Filtrar
1.
J Pharmacol Sci ; 154(4): 256-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485343

RESUMO

Platelet-activating factor (PAF) is expected to increase esophageal motility. However, to the best of our knowledge, this has not been examined. Thus, we investigated the contractile effects of PAF on guinea pig (GP) esophageal muscularis mucosae (EMM) and the extracellular Ca2+ influx pathways responsible. PAF (10-9-10-6 M) contracted EMM in a concentration-dependent manner. PAF (10-6 M)-induced contractions were almost completely suppressed by apafant (a PAF receptor antagonist, 3 × 10-5 M). In EMM strips, PAF receptor and PAF-synthesizing/degrading enzyme mRNAs were detected. PAF (10-6 M)-induced contractions were abolished by extracellular Ca2+ removal but were not affected by diltiazem [a voltage-dependent Ca2+ channel (VDCC) inhibitor, 10-5 M]. PAF (10-6 M)-induced contractions in the presence of diltiazem were significantly suppressed by LOE-908 [a receptor-operated Ca2+ channel (ROCC) inhibitor, 3 × 10-5 M], SKF-96365 [an ROCC and store-operated Ca2+ channel (SOCC) inhibitor, 3 × 10-5 M], and LOE-908 plus SKF-96365. Among the tested ROCC/SOCC-related mRNAs, Trpc3, Trpc6, and Trpv4/Orai1, Orai3, and Stim2 were abundantly expressed in EMM strips. These results indicate that PAF potently induces GP EMM contractions that are dependent on extracellular Ca2+ influx through ROCCs/SOCCs, and VDCCs are unlikely to be involved.


Assuntos
Diltiazem , Isoquinolinas , Fator de Ativação de Plaquetas , Cobaias , Animais , Diltiazem/farmacologia , Fator de Ativação de Plaquetas/farmacologia , Acetamidas , Canais de Cálcio/metabolismo , Mucosa/metabolismo , Cálcio/metabolismo
2.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836742

RESUMO

Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 µM and 0.46 µM, respectively. Within the series, complex (5) was less effective (IC50 = 39 µM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.


Assuntos
Antineoplásicos , Complexos de Coordenação , Elementos de Transição , Animais , Humanos , Coelhos , Agregação Plaquetária , Fator de Ativação de Plaquetas/farmacologia , Fator de Ativação de Plaquetas/metabolismo , Plaquetas/metabolismo , Trombina/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Ligantes , Mediadores da Inflamação/metabolismo , Dimetil Sulfóxido/farmacologia , Quinoxalinas/farmacologia , Células HEK293 , Células HeLa , Antineoplásicos/farmacologia , Elementos de Transição/metabolismo
3.
J Biomed Sci ; 30(1): 62, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533081

RESUMO

BACKGROUND: Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS: C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS: Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS: Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.


Assuntos
Armadilhas Extracelulares , Lesão Pulmonar , Sepse , Camundongos , Animais , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Neutrófilos/metabolismo , Infiltração de Neutrófilos , Lesão Pulmonar/metabolismo , Switching de Imunoglobulina , Camundongos Endogâmicos C57BL , Macrófagos , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia
4.
Biol Pharm Bull ; 46(7): 997-1003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394649

RESUMO

Platelet-activating factor (PAF) not only acts as a mediator of platelet aggregation, inflammation, and allergy responses but also as a constrictor of various smooth muscle (SM) tissues, including gastrointestinal, tracheal/bronchial, and pregnancy uterine SMs. Previously, we reported that PAF induces basal tension increase (BTI) and oscillatory contraction (OC) in mouse urinary bladder SM (UBSM). In this study, we examined the Ca2+ influx pathways involved in PAF-induced BTI and OC in the mouse UBSM. PAF (10-6 M) induced BTI and OC in mouse UBSM. However, the PAF-induced BTI and OC were completely suppressed by extracellular Ca2+ removal. PAF-induced BTI and OC frequencies were markedly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors (verapamil (10-5 M), diltiazem (10-5 M), and nifedipine (10-7 M)). However, these VDCC inhibitors had a minor effect on the PAF-induced OC amplitude. The PAF-induced OC amplitude in the presence of verapamil (10-5 M) was strongly suppressed by SKF-96365 (3 × 10-5 M), an inhibitor of receptor-operated Ca2+ channel (ROCC) and store-operated Ca2+ channel (SOCC), but not by LOE-908 (3 × 10-5 M) (an inhibitor of ROCC). Overall, PAF-induced BTI and OC in mouse UBSM depend on Ca2+ influx and the main Ca2+ influx pathways in PAF-induced BTI and OC may be VDCC and SOCC. Of note, VDCC may be involved in PAF-induced BTI and OC frequency, and SOCC might be involved in PAF-induced OC amplitude.


Assuntos
Canais de Cálcio Tipo L , Bexiga Urinária , Gravidez , Feminino , Camundongos , Animais , Bexiga Urinária/fisiologia , Fator de Ativação de Plaquetas/farmacologia , Verapamil/farmacologia , Contração Muscular , Cálcio/metabolismo
5.
J Pharmacol Sci ; 152(2): 123-127, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169476

RESUMO

We investigated the extracellular Ca2+ influx pathways involved in platelet-activating factor (PAF)-enhanced guinea pig detrusor smooth muscle (DSM) contractile activities. One micromolar PAF-enhanced DSM contractile activities were completely inhibited by extracellular Ca2+ removal and strongly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors. PAF-enhanced DSM contractile activities remaining in the presence of verapamil (10 µM) were not inhibited by LOE-908 (30 µM, an inhibitor of receptor-operated Ca2+ channels (ROCCs)), but were almost completely inhibited by SKF-96365 (30 µM, an inhibitor of store-operated Ca2+ channels (SOCCs) and ROCCs). These results suggest that VDCCs and SOCCs are responsible for PAF-enhanced DSM contractile activities.


Assuntos
Músculo Liso , Fator de Ativação de Plaquetas , Cobaias , Animais , Fator de Ativação de Plaquetas/farmacologia , Fator de Ativação de Plaquetas/metabolismo , Músculo Liso/metabolismo , Contração Muscular , Canais de Cálcio/metabolismo , Verapamil , Cálcio/metabolismo
6.
Ann Allergy Asthma Immunol ; 131(2): 239-252.e6, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098406

RESUMO

BACKGROUND: The underlying mechanisms of an immediate food-induced allergic reaction involve mast cell degranulation and recruitment of other effector cells, such as lymphocytes, eosinophils, and basophils. How the interaction of various mediators and cells results in anaphylaxis is not fully understood. OBJECTIVE: To evaluate changes in platelet-activating factor (PAF), platelet-activating factor acetylhydrolase (PAF-AH), tryptase, eosinophils, basophils, and eosinophil cationic protein (ECP) in cashew nut-induced anaphylaxis. METHODS: Open cashew nut challenges were performed on 106 children (aged 1-16 years), sensitized to cashew nut, with earlier allergic reaction to cashew nut or no known exposure. PAF, PAF-AH, tryptase, ECP, eosinophils, and basophils were measured at 4 time points. RESULTS: Of 72 challenges with positive results, 34 were defined as anaphylactic. Eosinophil count decreased progressively during an anaphylactic reaction at all 4 time points (P < .005*) compared with baseline. Although significant PAF elevation was observed 1 hour from moderate-to-severe reaction (P = .04*), PAF seemed to peak especially in anaphylaxis but did not achieve statistical significance. PAF peak ratio (peak PAF/baseline PAF) was significantly greater in anaphylactic reactions compared with the no-anaphylaxis group (P = .008*). Maximal percentage change in eosinophils revealed negative correlation to severity score and PAF peak ratio (Spearman's rho -0.424 and -0.516, respectively). Basophils decreased significantly in moderate-to-severe reactions and in anaphylaxis (P < .05*) compared with baseline. Delta-tryptase (peak tryptase minus baseline) did not differ significantly between anaphylaxis and the no-anaphylaxis subgroups (P = .05). CONCLUSION: PAF is a specific anaphylaxis biomarker. Marked decline of eosinophils during anaphylaxis may be related to robust secretion of PAF reflecting migration of eosinophils to target tissues.


Assuntos
Anacardium , Anafilaxia , Criança , Humanos , Triptases/metabolismo , Nozes , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Eosinófilos , Linfócitos
7.
Am J Physiol Heart Circ Physiol ; 324(5): H610-H623, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867447

RESUMO

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions.NEW & NOTEWORTHY Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that 1) inactivation of hyperpermeability is an actively regulated process, 2) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and 3) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Camundongos Knockout , Endotélio/metabolismo , Permeabilidade Capilar , Endotélio Vascular/metabolismo
8.
Nat Commun ; 13(1): 6365, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289206

RESUMO

G protein-coupled receptors (GPCRs) are important drug targets that mediate various signaling pathways by activating G proteins and engaging ß-arrestin proteins. Despite its importance for the development of therapeutics with fewer side effects, the underlying mechanism that controls the balance between these signaling modes of GPCRs remains largely unclear. Here, we show that assembly into dimers and oligomers can largely influence the signaling mode of the platelet-activating factor receptor (PAFR). Single-particle analysis results show that PAFR can form oligomers at low densities through two possible dimer interfaces. Stabilization of PAFR oligomers through cross-linking increases G protein activity, and decreases ß-arrestin recruitment and agonist-induced internalization significantly. Reciprocally, ß-arrestin prevents PAFR oligomerization. Our results highlight a mechanism involved in the control of receptor signaling, and thereby provide important insights into the relationship between GPCR oligomerization and downstream signaling.


Assuntos
Fator de Ativação de Plaquetas , Receptores Acoplados a Proteínas G , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Transdução de Sinais , beta-Arrestina 1/metabolismo , Proteínas de Ligação ao GTP/metabolismo
9.
Eur J Med Chem ; 242: 114681, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36001936

RESUMO

Thrombin is the most potent platelet aggregator. To discover the selective inhibitor of thrombin that is important to curing platelet aggregation-related diseases, docking experiments were performed to dock (1R,3S)-2,3,4,9-tetrahydro-ß-carboline-3- carboxylic acid, [(1R,3S)-THCCA], and (1S,3S)-2,3,4,9-tetrahydro-ß-carboline-3- carboxylic acid, [(1S,3S)-THCCA], into the p pocket of bovine thrombin. The ideal match supported that (1R,3S)-THCCA could be used as a potential lead compound. In this case 20 natural amino acids were theoretically introduced into the 3-carboxyl of (1R,3S)-THCCA and 20 derivatives, (1R,3S)-THCCA-amino acids, were docked into p pocket of bovine thrombin to perform virtual screening. The screening revealed that comparing to (1R,3S)-THCCA itself the DockScores of 16 derivatives were higher, and (1R,3S)-THCCA-Asn (4j) got the highest DockScore. Thus, 16 derivatives were synthesized for experimental study. The in vitro anti-platelet aggregation assay showed that at 100 µM of concentration the 16 derivatives failed to inhibit the platelet aggregation induced by both adenosine diphosphate and arachidonic acid. On the other hand, however, the IC50 value of the 16 derivatives inhibiting the platelet aggregation induced by platelet activating factor and thrombin ranged from 9.44 µM to 194.64 µM and from 0.07 µM to 9.56 µM, respectively. The in vitro anti-platelet aggregation assay suggested that the 16 derivatives selectively inhibited the platelet aggregation induced by thrombin. In particular, the IC50 of (1R,3S)-THCCA-Asn (4j) had the lowest value. On rat model at 1 nmol/kg of dosage the 16 derivatives effectively prevented thrombus formation. It is worth pointing out that even at 0.01 nmol/kg of dosage, 4j still effectively prevented thrombus formation. 4j hardly has effects on the proliferation of mammalian cells and rat tail bleeding time. In conclusion, the combination of virtual screening and biological assays successfully lead to the discovery of 4j as a promising candidate of selective inhibitor of thrombin.


Assuntos
Trombina , Trombose , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Aminoácidos/química , Animais , Ácidos Araquidônicos , Bioensaio , Plaquetas , Ácidos Carboxílicos/farmacologia , Bovinos , Mamíferos , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Inibidores da Agregação Plaquetária/química , Ratos , Trombina/metabolismo , Trombose/metabolismo
10.
Environ Sci Pollut Res Int ; 29(26): 40190-40203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119631

RESUMO

5-fluorouracil (5-FU) is a widely used chemotherapeutic drug, but its hepatotoxicity challenges its clinical use. Thus, searching for a hepatoprotective agent is highly required to prevent the accompanied hepatic hazards. The current study aimed to investigate the potential benefit and mechanisms of action of rupatadine (RU), a Platelet-activating factor (PAF) antagonist, in the prevention of 5-FU-related hepatotoxicity in rats. Hepatotoxicity was developed in male albino rats by a single 5-FU (150 mg/kg) intra-peritoneal injection on the 7th day of the experiment. RU (3 mg/kg/day) was orally administrated to the rodents for 10 days. Hepatic toxicity was assessed by measuring both liver and body weights, serum alanine aminotransferase and aspartate aminotransferase (ALT and AST), hepatic oxidative stress parameters (malondialdehyde (MDA), nitric oxide levels (NOx), reduced glutathione (GSH), superoxide dismutase (SOD)), and heme oxygenase-1 (HO-1). Inflammatory markers expressions (inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNFα), interleukins; IL-1B, IL-6), the apoptotic marker (caspase-3), and PAF were measured in the hepatic tissue. 5-FU-induced hepatotoxicity was proved by the biochemical along with histopathological assessments. RU ameliorated 5-FU-induced liver damage as proved by the improved serum ALT, AST, and hepatic oxidative stress parameters, the attenuated expression of hepatic pro-inflammatory cytokines and PAF, and the up-regulation of HO-1. Therefore, it can be concluded that RU pretreatment exerted a hepatoprotective effect against 5-FU-induced liver damage through both its powerful anti-inflammatory, antioxidant, and anti-apoptotic effect.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Heme Oxigenase-1 , Alanina Transaminase , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciproeptadina/análogos & derivados , Fluoruracila/toxicidade , Heme Oxigenase-1/metabolismo , Fígado , Masculino , Estresse Oxidativo , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Ratos
11.
Sci Rep ; 12(1): 2783, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177680

RESUMO

In this study, we investigated the effects of platelet-activating factor (PAF) on the basal tone and spontaneous contractile activities of guinea pig (GP) and mouse urinary bladder (UB) smooth muscle (UBSM) tissues to determine whether PAF could induce UBSM tissue contraction. In addition, we examined the mRNA expression of the PAF receptor, PAF-synthesizing enzyme (lysophosphatidylcholine acyltransferase, LPCAT), and PAF-degrading enzyme (PAF acetylhydrolase, PAF-AH) in GP and mouse UB tissues using RT-qPCR. PAF (10-9-10-6 M) strongly enhanced the basal tone and spontaneous contractile activities (amplitude and frequency) of GP and mouse UBSM tissues in a concentration-dependent manner. The enhancing effects of PAF (10-6 M) on both GP and mouse UBSM contractile activities were strongly suppressed by pretreatment with apafant (a PAF receptor antagonist, GP: 10-5 M; mouse: 3 × 10-5 M). The PAF receptor (Ptafr), LPCAT (Lpcat1, Lpcat2), and PAF-AH (Pafah1b3, Pafah2) mRNAs were detected in GP and mouse UB tissues. These findings reveal that PAF strongly enhances the contractile mechanical activities of UBSM tissues through its receptor and suggest that the PAF-synthesizing and -degrading system exists in UBSM tissues. PAF may serve as both an endogenous UBSM constrictor and an endogenous mediator leading to detrusor overactivity.


Assuntos
Contração Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Bexiga Urinária/metabolismo , Animais , Cobaias , Masculino , Camundongos
12.
Front Immunol ; 13: 1045731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741361

RESUMO

The ability of ultraviolet radiation to suppress the immune system is thought to be central to both its beneficial (protection from autoimmunity) and detrimental (carcinogenic) effects. Previous work revealed a key role for lipids particularly platelet-activating factor and sphingosine-1-phosphate in mediating UV-induced immune suppression. We therefore hypothesized that there may be other UV-induced lipids that have immune regulatory roles. To assess this, mice were exposed to an immune suppressive dose of solar-simulated UV (8 J/cm2). Lipidomic analysis identified 6 lipids (2 acylcarnitines, 2 neutral lipids, and 2 phospholipids) with significantly increased levels in the skin-draining lymph nodes of UV-irradiated mice. Imaging mass spectrometry of the lipids in combination with imaging mass cytometry identification of lymph node cell subsets indicated a preferential location of UV-induced lipids to T cell areas. In vitro co-culture of skin-draining lymph node lipids with lymphocytes showed that lipids derived from UV-exposed mice have no effect on T cell activation but significantly inhibited T cell proliferation, indicating that the lipids play an immune regulatory role. These studies are important first steps in identifying novel lipids that contribute to UV-mediated immune suppression.


Assuntos
Lipidômica , Raios Ultravioleta , Camundongos , Animais , Raios Ultravioleta/efeitos adversos , Pele , Fator de Ativação de Plaquetas/farmacologia , Linfonodos
13.
Prostaglandins Other Lipid Mediat ; 158: 106606, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923152

RESUMO

In the present work the entomopathogenic fungus B. bassiana lipids were studied against the potent pro-inflammatory and thrombotic mediators implicated in several disorders, platelet-activating factor (PAF) and thrombin. Bioactivities of lipid extracts from B. bassiana cells and culture supernatants and of their lipid fractions separated by a one-step HPLC-analysis ere assessed against the PAF/Thrombin-induced aggregation of washed rabbit platelets. Lipid extracts from both cell-biomass and supernatant inhibited strongly PAF/Thrombin-activities and platelet-aggregation, exhibiting higher specificity against PAF. Similarly, HPLC-derived lipid-fractions of phenolics/glycolipids, Sphingomyelins and Phosphatidylcholines (PC) showed strong anti-PAF potency. PC PAF-like molecules exhibited the strongest antagonistic anti-PAF effects, while in higher amounts they agonistically inhibited PAF-activities. Some bioactive lipids with strong anti-PAF effects are exo-cellularly secreted in the culture media during fungal growth, while others are not. The presence of such lipid bioactives in B. bassiana with strong anti-inflammatory and anti-thrombotic properties, provide new perspectives and putative future applications for this entomopathogenic fungus.


Assuntos
Beauveria , Animais , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão , Fator de Ativação de Plaquetas/farmacologia , Agregação Plaquetária , Coelhos
14.
Chem Biodivers ; 19(1): e202100668, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34812586

RESUMO

Forsyqinlingines C (1) and D (2), two C9 -monoterpenoid alkaloids bearing a rare skeleton, were isolated from the ripe fruits of Forsythia suspensa. Their structures, including absolute configurations, were fully elucidated by extensive spectroscopic data and ECD experiments. The plausible biogenetic pathway for compounds 1 and 2 was also proposed. In vitro, two C9 -monoterpenoid alkaloids showed anti-inflammatory activity performed by the inhibitory effect on the release of ß-glucuronidase in rat polymorphonuclear leukocytes (PMNs), as well as antiviral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV).


Assuntos
Alcaloides/química , Anti-Inflamatórios/química , Antivirais/química , Forsythia/química , Monoterpenos/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/isolamento & purificação , Antivirais/farmacologia , Forsythia/metabolismo , Frutas/química , Frutas/metabolismo , Glucuronidase/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Ratos , Vírus Sinciciais Respiratórios/efeitos dos fármacos
15.
Platelets ; 33(4): 562-569, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34348059

RESUMO

Experiments were undertaken to identify the nature of a previously identified inhibitor of PAF-induced platelet aggregation (PA) in human saliva. Human saliva fractionated by preparative thin layer chromatography (TLC) yielded a fraction that co-migrated with fatty acids (FAs) and inhibited PAF-induced aggregation of platelets. Synthetic FAs tested for their capacities to inhibit 0.1 nM PAF-induced PA showed that only the cis-unsaturated compounds were inhibitory with activities of some of the polyunsaturated FAs (PUFA) reaching almost 100% at 20 µM. Eicosapentanoic acid (EPA) and 8,11,14-eicosatrienoic acid also deaggregated the PAF-induced aggregates. With the exception of oleic acid (OLA), cis-monounsaturated FAs, and elaidic acid, the trans isomer of OLA, were poor inhibitors. In a direct comparison with other platelet agonists, ADP, thrombin, and ionophore A23187, the active saliva fraction and selected individual FAs inhibited, to greater or lesser extent, PA induced by each of the agonists. EPA, OLA, linoleic acid (LNA), and the active saliva fraction were potent inhibitors of ADP-induced PA, EPA completely inhibited thrombin-induced PA and the saliva fraction showed only weak - moderate inhibitory activity to both thrombin- and ionophore A23187-induced PA. Other reports of endogenous PAF inhibitors in mammalian tissues are compared to the present results. PAF can trigger and amplify inflammatory cascades suggesting a possible modulation role for cis-unsaturated FAs in some diseases.


Assuntos
Fator de Ativação de Plaquetas , Agregação Plaquetária , Difosfato de Adenosina/farmacologia , Animais , Plaquetas , Calcimicina/análise , Calcimicina/farmacologia , Ácidos Graxos/análise , Ácidos Graxos/farmacologia , Humanos , Ionóforos/análise , Ionóforos/farmacologia , Mamíferos , Fator de Ativação de Plaquetas/análise , Fator de Ativação de Plaquetas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Saliva/química , Trombina/farmacologia
16.
Vet Immunol Immunopathol ; 241: 110336, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649042

RESUMO

Neutrophils are essential for innate immunity as the first line of defence. Neutrophils act as phagocytic white blood cells to kill bacteria and other microorganisms. A strong respiratory burst of neutrophils, dependent on reactive oxygen species, is produced during phagocytosis. Platelet-activating factor (PAF) is a signalling molecule with several prominent roles in tissue injury, inflammation, and platelet aggregation. However, the detailed mechanisms and intracellular signalling pathways involved in PAF-mediated neutrophil activation remain unclear. Here, we investigated the effect of PAF on changes in calcium concentration ([Ca2+]i) and oxygen radical (O2-) generation in activating canine neutrophils. We further evaluated these effects of PAF with inhibition of G protein-coupled receptors using the specific inhibitor suramin. Blood samples were collected from a total of five dogs and neutrophils were isolated. PAF stimulation of canine neutrophils caused an increase in [Ca2+]i as well as the generation of O2-, and the PAF receptor was sensitive to suramin. The results suggested that PAF stimulation of canine neutrophils may cause Ca2+ influx from the endoplasmic reticulum into the cytoplasm (as the first wave) and then trigger store-operated Ca2+ entry (as the second wave), which is an important intracellular signal transduction pathway for neutrophil activation. Furthermore, O2- generation by PAF stimulation may depend on the intracellular signalling pathway, with increasing inositol trisphosphate levels and [Ca2+]i via G protein-coupled receptors. The finding that PAF-activating platelet aggregation is involved in canine neutrophil activation suggests a close relationship between haemostasis and neutrophil activation in dogs, offering new insight into the response to infection.


Assuntos
Neutrófilos , Fator de Ativação de Plaquetas , Animais , Cálcio , Cães , Neutrófilos/citologia , Fator de Ativação de Plaquetas/farmacologia , Espécies Reativas de Oxigênio , Receptores Acoplados a Proteínas G , Transdução de Sinais , Suramina/farmacologia
17.
Front Immunol ; 12: 642867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796110

RESUMO

Platelet-activating factor (PAF) is an important mediator of the systemic inflammatory response. In the case of sepsis, proper activation and function of neutrophils as the first line of cellular defense are based on a well-balanced physiological response. However, little is known about the role of PAF in cellular changes of neutrophils during sepsis. Therefore, this study investigates the reaction patterns of neutrophils induced by PAF with a focus on membrane potential (MP), intracellular pH, and cellular swelling under physiological and pathophysiological conditions and hypothesizes that the PAF-mediated response of granulocytes is altered during sepsis. The cellular response of granulocytes including MP, intracellular pH, cellular swelling, and other activation markers were analyzed by multiparametric flow cytometry. In addition, the chemotactic activity and the formation of platelet-neutrophil complexes after exposure to PAF were investigated. The changes of the (electro-)physiological response features were translationally verified in a human ex vivo whole blood model of endotoxemia as well as during polymicrobial porcine sepsis. In neutrophils from healthy human donors, PAF elicited a rapid depolarization, an intracellular alkalization, and an increase in cell size in a time- and dose-dependent manner. Mechanistically, the alkalization was dependent on sodium-proton exchanger 1 (NHE1) activity, while the change in cellular shape was sodium flux- but only partially NHE1-dependent. In a pathophysiological altered environment, the PAF-induced response of neutrophils was modulated. Acidifying the extracellular pH in vitro enhanced PAF-mediated depolarization, whereas the increases in cell size and intracellular pH were largely unaffected. Ex vivo exposure of human whole blood to lipopolysaccharide diminished the PAF-induced intracellular alkalization and the change in neutrophil size. During experimental porcine sepsis, depolarization of the MP was significantly impaired. Additionally, there was a trend for increased cellular swelling, whereas intracellular alkalization remained stable. Overall, an impaired (electro-)physiological response of neutrophils to PAF stimulation represents a cellular hallmark of those cells challenged during systemic inflammation. Furthermore, this altered response may be indicative of and causative for the development of neutrophil dysfunction during sepsis.


Assuntos
Ativação de Neutrófilo/efeitos dos fármacos , Fator de Ativação de Plaquetas/farmacologia , Sepse/imunologia , Animais , Endotoxemia/imunologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Inflamação/imunologia , Masculino , Potenciais da Membrana , NADPH Oxidase 2/fisiologia , Ativação de Neutrófilo/fisiologia , Suínos
18.
J Leukoc Biol ; 109(5): 915-930, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33070381

RESUMO

Alpha-1-acid glycoprotein (AGP-1) is a positive acute phase glycoprotein with uncertain functions. Serum AGP-1 (sAGP-1) is primarily derived from hepatocytes and circulates as 12-20 different glycoforms. We isolated a glycoform secreted from platelet-activating factor (PAF)-stimulated human neutrophils (nAGP-1). Its peptide sequence was identical to hepatocyte-derived sAGP-1, but nAGP-1 differed from sAGP-1 in its chromatographic behavior, electrophoretic mobility, and pattern of glycosylation. The function of these 2 glycoforms also differed. sAGP-1 activated neutrophil adhesion, migration, and neutrophil extracellular traps (NETosis) involving myeloperoxidase, peptidylarginine deiminase 4, and phosphorylation of ERK in a dose-dependent fashion, whereas nAGP-1 was ineffective as an agonist for these events. Furthermore, sAGP-1, but not nAGP-1, inhibited LPS-stimulated NETosis. Interestingly, nAGP-1 inhibited sAGP-1-stimulated neutrophil NETosis. The discordant effect of the differentially glycosylated AGP-1 glycoforms was also observed in platelets where neither of the AGP-1 glycoforms alone stimulated aggregation of washed human platelets, but sAGP-1, and not nAGP-1, inhibited aggregation induced by PAF or ADP, but not by thrombin. These functional effects of sAGP-1 correlated with intracellular cAMP accumulation and phosphorylation of the protein kinase A substrate vasodilator-stimulated phosphoprotein and reduction of Akt, ERK, and p38 phosphorylation. Thus, the sAGP-1 glycoform limits platelet reactivity, whereas nAGP-1 glycoform also limits proinflammatory actions of sAGP-1. These studies identify new functions for this acute phase glycoprotein and demonstrate that the glycosylation of AGP-1 controls its effects on 2 critical cells of acute inflammation.


Assuntos
Plaquetas/metabolismo , Neutrófilos/metabolismo , Orosomucoide/metabolismo , Difosfato de Adenosina/farmacologia , Biomarcadores/metabolismo , Plaquetas/efeitos dos fármacos , AMP Cíclico/metabolismo , Armadilhas Extracelulares/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Modelos Biológicos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Orosomucoide/agonistas , Peptídeos/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Polissacarídeos/metabolismo , Isoformas de Proteínas/metabolismo
19.
Eur Respir J ; 57(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32764118

RESUMO

Epidemiological data from the SARS-CoV-2 outbreak suggest sex differences in mortality and vulnerability; however, sex-dependent incidence of acute respiratory distress syndrome (ARDS) remains controversial and the sex-dependent mechanisms of endothelial barrier regulation are unknown. In premenopausal women, increased signalling of angiotensin (Ang)(1-7) via the Mas receptor has been linked to lower cardiovascular risk. Since stimulation of the Ang(1-7)/Mas axis protects the endothelial barrier in acute lung injury (ALI), we hypothesised that increased Ang(1-7)/Mas signalling may protect females over males in ALI/ARDS.Clinical data were collected from Charité inpatients (Berlin) and sex differences in ALI were assessed in wild-type (WT) and Mas-receptor deficient (Mas-/- ) mice. Endothelial permeability was assessed as weight change in isolated lungs and as transendothelial electrical resistance (TEER) in vitroIn 734 090 Charité inpatients (2005-2016), ARDS had a higher incidence in men as compared to women. In murine ALI, male WT mice had more lung oedema, protein leaks and histological evidence of injury than female WT mice. Lung weight change in response to platelet-activating factor (PAF) was more pronounced in male WT and female Mas-/- mice than in female WT mice, whereas Mas-receptor expression was higher in female WT lungs. Ovariectomy attenuated protection in female WT mice and reduced Mas-receptor expression. Oestrogen increased Mas-receptor expression and attenuated endothelial leakage in response to thrombin in vitro This effect was alleviated by Mas-receptor blockade.Improved lung endothelial barrier function protects female mice from ALI-induced lung oedema. This effect is partially mediated via enhanced Ang(1-7)/Mas signalling as a result of oestrogen-dependent Mas expression.


Assuntos
Lesão Pulmonar Aguda/genética , Angiotensina I/metabolismo , COVID-19/epidemiologia , Permeabilidade Capilar/genética , Endotélio Vascular/metabolismo , Estrogênios/metabolismo , Pulmão/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Síndrome do Desconforto Respiratório/epidemiologia , Lesão Pulmonar Aguda/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiotensina I/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Permeabilidade Capilar/efeitos dos fármacos , Criança , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Estradiol/farmacologia , Feminino , Humanos , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ovariectomia , Fragmentos de Peptídeos/farmacologia , Fator de Ativação de Plaquetas/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , SARS-CoV-2 , Distribuição por Sexo , Fatores Sexuais , Regulação para Cima , Adulto Jovem
20.
Drug Des Devel Ther ; 14: 4205-4214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116408

RESUMO

AIM: To examine the effects of platelet-activating factor (PAF) on the barrier functions of cultured retinal pigment epithelial (RPE) cells. METHODS: A human RPE cell line (ARPE-19) was cultured on microporous filter supports and treated with PAF and WEB 2086, a specific PAF-receptor (PAF-R) antagonist. The permeability of the RPE monolayer was measured using transepithelial electrical resistance (TER) and sodium fluorescein flux. The expression of the tight junction protein zonula occludens (ZO)-1 and the adherens junction protein N-cadherin was assessed using immunohistochemistry and Western blotting. We also measured the vascular endothelial growth factor (VEGF) concentrations in PAF-treated cultures and re-measured RPE monolayer permeability in the presence of VEGF-neutralizing antibodies. RESULTS: PAF significantly decreased the TER and enhanced the sodium fluorescein flux of the RPE monolayer and downregulated the expression of ZO-1 and N-cadherin. These effects were abolished by WEB 2086-mediated blockage of the PAF-R. PAF stimulation increased VEGF expression in RPE cells, and the antibody-mediated neutralization of VEGF caused a partial recovery of the barrier properties. CONCLUSION: The barrier functions of ARPE-19 cells were altered by PAF, and these effects were partly mediated by an upregulation of VEGF expression in these cells. Our results contribute to the growing body of evidence supporting the role of PAF in choroidal neovascularization. Our findings suggest that PAF is a novel target in the development of therapies for increased permeability of the RPE monolayer.


Assuntos
Fator de Ativação de Plaquetas/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Azepinas/farmacologia , Caderinas/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Impedância Elétrica , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Ativação de Plaquetas/antagonistas & inibidores , Inibidores da Agregação Plaquetária/farmacologia , Epitélio Pigmentado da Retina/citologia , Junções Íntimas/efeitos dos fármacos , Triazóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Proteína da Zônula de Oclusão-1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...